Stanley depth and simplicial spanning trees
نویسندگان
چکیده
منابع مشابه
Enumeration of spanning trees in simplicial complexes
The Kirchoff Matrix Tree Theorem states that the number of spanning trees in a graph G is equal to the absolute value of any cofactor of the Laplacian matrix of G. As the theory of simplicial complexes is a generalization of the theory of graphs one would suspect that there is a generalization of the notion of spanning trees to simplicial complexes, such that the number of spanning trees in a g...
متن کاملStanley Decompositions and Partionable Simplicial Complexes
We study Stanley decompositions and show that Stanley’s conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.
متن کاملStanley Decompositions and Partitionable Simplicial Complexes
We study Stanley decompositions and show that Stanley’s conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.
متن کاملAn Inequality between Depth and Stanley Depth
We show that Stanley’s Conjecture holds for square free monomial ideals in five variables, that is the Stanley depth of a square free monomial ideal in five variables is greater or equal with its depth.
متن کاملInterval partitions and Stanley depth
Article history: Received 20 May 2008 Available online 21 August 2009
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2015
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-015-0589-y