Stanley depth and simplicial spanning trees

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumeration of spanning trees in simplicial complexes

The Kirchoff Matrix Tree Theorem states that the number of spanning trees in a graph G is equal to the absolute value of any cofactor of the Laplacian matrix of G. As the theory of simplicial complexes is a generalization of the theory of graphs one would suspect that there is a generalization of the notion of spanning trees to simplicial complexes, such that the number of spanning trees in a g...

متن کامل

Stanley Decompositions and Partionable Simplicial Complexes

We study Stanley decompositions and show that Stanley’s conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.

متن کامل

Stanley Decompositions and Partitionable Simplicial Complexes

We study Stanley decompositions and show that Stanley’s conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.

متن کامل

An Inequality between Depth and Stanley Depth

We show that Stanley’s Conjecture holds for square free monomial ideals in five variables, that is the Stanley depth of a square free monomial ideal in five variables is greater or equal with its depth.

متن کامل

Interval partitions and Stanley depth

Article history: Received 20 May 2008 Available online 21 August 2009

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2015

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-015-0589-y